![Find the indicated limit by using the limits
\[
\lim_{(x,y)\to(a,b)} f(x,y) = 5 \quad \text{and} \quad
\lim_{(x,y)\to(a,b)} g(x,y) = -4.
\]
\[
\lim_{(x,y)\to(a,b)} [f(x,y) - g(x,y)]
\]
**Answer:** 9
1.解题 2.讲题 3.使用 MathTex 显示中文](https://manimvideo.explanation.fun/video/cover/578839233902342145.png)
▶
Find the indicated limit by using the limits
\[
\lim_{(x,y)\to(a,b)} f(x,y) = 5 \quad \text{and} \quad
\lim_{(x,y)\to(a,b)} g(x,y) = -4.
\]
\[
\lim_{(x,y)\to(a,b)} [f(x,y) - g(x,y)]
\]
**Answer:** 9
1.解题 2.讲题 3.使用 MathTex 显示中文
![## The position vector **r** describes the path of an object moving in the xy-plane.
### **Position Vector**
[
r(t) = t^2 \mathbf{i} + t \mathbf{j}
]
### **Point**
[
(4,, 2)
]
---
### **(a)** Find the velocity vector (v(t)), speed (s(t)), and acceleration vector (a(t)) of the object.
[
v(t) = \langle 2t,\ 1 \rangle
]
[
s(t) = \sqrt{4t^2 + 1}
]
[
a(t) = \langle 2,\ 0 \rangle
]
---
### **(b)** Evaluate the velocity vector and acceleration vector of the object at the given point.
[
v(2) = \langle 4,\ 1 \rangle
]
[
a(2) = \langle 2,\ 0 \rangle
]
1.讲解题目是什意思? 2.讲解解题过程](https://manimvideo.explanation.fun/video/cover/578766165717835777.png)
▶
## The position vector **r** describes the path of an object moving in the xy-plane.
### **Position Vector**
[
r(t) = t^2 \mathbf{i} + t \mathbf{j}
]
### **Point**
[
(4,, 2)
]
---
### **(a)** Find the velocity vector (v(t)), speed (s(t)), and acceleration vector (a(t)) of the object.
[
v(t) = \langle 2t,\ 1 \rangle
]
[
s(t) = \sqrt{4t^2 + 1}
]
[
a(t) = \langle 2,\ 0 \rangle
]
---
### **(b)** Evaluate the velocity vector and acceleration vector of the object at the given point.
[
v(2) = \langle 4,\ 1 \rangle
]
[
a(2) = \langle 2,\ 0 \rangle
]
1.讲解题目是什意思? 2.讲解解题过程