T

TMA

Video History

Page 30 / 43
**Discuss the continuity of the function**

[
f(x, y, z) = \frac{61}{\sqrt{x^2 + y^2 + z^2}}
]

**Options:**

* ○ continuous everywhere
* ○ continuous except where (x^2 + y^2 + z^2 < 1)
* ○ continuous except where (x^2 + y^2 + z^2 > 1)
* ○ continuous except where (x^2 + y^2 + z^2 > 0)
* ○ continuous except at ((0, 0, 0))

**Discuss the continuity of the function** [ f(x, y, z) = \frac{61}{\sqrt{x^2 + y^2 + z^2}} ] **Options:** * ○ continuous everywhere * ○ continuous except where (x^2 + y^2 + z^2 < 1) * ○ continuous except where (x^2 + y^2 + z^2 > 1) * ○ continuous except where (x^2 + y^2 + z^2 > 0) * ○ continuous except at ((0, 0, 0))

Match the graph of the surface with one of the contour maps.
f(x, y) = e^(1 − x^2 + y^2)

Match the graph of the surface with one of the contour maps. f(x, y) = e^(1 − x^2 + y^2)

10:占卜的后续步骤——变卦与解卦主要内容:根据三个数字确定“本卦”、“互卦”和“变卦”。确定“动爻”(变爻)的位置。 解卦的核心:以本卦的卦辞和变爻的爻辞为主,互卦和变卦为辅。

10:占卜的后续步骤——变卦与解卦主要内容:根据三个数字确定“本卦”、“互卦”和“变卦”。确定“动爻”(变爻)的位置。 解卦的核心:以本卦的卦辞和变爻的爻辞为主,互卦和变卦为辅。

第10课:占卜的后续步骤——变卦与解卦

主要内容:

如何根据三个数字确定“本卦”、“互卦”和“变卦”。

确定“动爻”(变爻)的位置。

解卦的核心:以本卦的卦辞和变爻的爻辞为主,互卦和变卦为辅。

第10课:占卜的后续步骤——变卦与解卦 主要内容: 如何根据三个数字确定“本卦”、“互卦”和“变卦”。 确定“动爻”(变爻)的位置。 解卦的核心:以本卦的卦辞和变爻的爻辞为主,互卦和变卦为辅。

 Home
9:《易经》的运用——占卜的原则与方法 主要内容: 占卜的哲学基础:“寂然不动,感而遂通”。 占卜的三原则:不诚不占、不义不占、不疑不占。 介绍傅佩荣老师推荐的“数字占卜法”(简单、易行、无需道具)。

Home 9:《易经》的运用——占卜的原则与方法 主要内容: 占卜的哲学基础:“寂然不动,感而遂通”。 占卜的三原则:不诚不占、不义不占、不疑不占。 介绍傅佩荣老师推荐的“数字占卜法”(简单、易行、无需道具)。

第5课、所见即所学? (哈伯和托伦的“感觉剥夺与图形识别”研究) 主要内容:让被试长时间佩戴特制的 distorting 眼镜,发现其知觉逐渐适应并恢复正常。但当摘掉眼镜后,其知觉又需要重新适应。这证明知觉不仅由感觉输入决定,更深受过去经验和学习的影响。

第5课、所见即所学? (哈伯和托伦的“感觉剥夺与图形识别”研究) 主要内容:让被试长时间佩戴特制的 distorting 眼镜,发现其知觉逐渐适应并恢复正常。但当摘掉眼镜后,其知觉又需要重新适应。这证明知觉不仅由感觉输入决定,更深受过去经验和学习的影响。

Here’s the full markdown version of your provided images:

---

### (a) Adjacency List Representation

**Graph:**

Vertices: a, b, c, d

**Adjacency List:**

| Vertex | Adjacent Vertices |
| :----: | :---------------: |
|    a   |         c         |
|    b   |         d         |
|    c   |        b, d       |
|    d   |         b         |

---

### (b) Adjacency Matrix Representation

**Graph:**

Vertices: a, b, c, d

**Adjacency Matrix:**

[
M_b =
\begin{pmatrix}
& a & b & c & d \
a & 0 & 1 & 0 & 1 \
b & 1 & 0 & 1 & 1 \
c & 0 & 1 & 0 & 1 \
d & 1 & 1 & 1 & 0
\end{pmatrix}
]

---

### (c) Adjacency Matrix Representation

**Graph:**

Vertices: a, b, c, d

**Adjacency Matrix:**

[
M_c =
\begin{pmatrix}
& a & b & c & d \
a & 1 & 0 & 1 & 1 \
b & 0 & 1 & 0 & 1 \
c & 1 & 1 & 1 & 0 \
d & 0 & 1 & 0 & 1
\end{pmatrix}
]

---


注意使用 mathtex 显示公式
中文输出

Here’s the full markdown version of your provided images: --- ### (a) Adjacency List Representation **Graph:** Vertices: a, b, c, d **Adjacency List:** | Vertex | Adjacent Vertices | | :----: | :---------------: | | a | c | | b | d | | c | b, d | | d | b | --- ### (b) Adjacency Matrix Representation **Graph:** Vertices: a, b, c, d **Adjacency Matrix:** [ M_b = \begin{pmatrix} & a & b & c & d \ a & 0 & 1 & 0 & 1 \ b & 1 & 0 & 1 & 1 \ c & 0 & 1 & 0 & 1 \ d & 1 & 1 & 1 & 0 \end{pmatrix} ] --- ### (c) Adjacency Matrix Representation **Graph:** Vertices: a, b, c, d **Adjacency Matrix:** [ M_c = \begin{pmatrix} & a & b & c & d \ a & 1 & 0 & 1 & 1 \ b & 0 & 1 & 0 & 1 \ c & 1 & 1 & 1 & 0 \ d & 0 & 1 & 0 & 1 \end{pmatrix} ] --- 注意使用 mathtex 显示公式 中文输出

### 5. Verify that the following program segment is correct with respect to the initial assertion *T* and the final assertion: [ (x \le y \land \text{max} = y) \lor (x > y \land \text{max} = x) ] ```plaintext if x <= y then max := y else max := x ``` --- **Solution:** Initial assertion *T* means this segment will always run and everything is always correct at the beginning of the segment. If ( x < y ) initially, *max* is set equal to *y*, so the left side of the final assertion ∨: ((x \le y \land \text{max} = y)) is true. If ( x = y ) initially, *max* is set equal to *y*, so ((x \le y \land \text{max} = y)) is again true. If ( x > y ), *max* is set equal to *x*, so the right side of the final assertion ∨: ((x > y \land \text{max} = x)) is true. Since ∨ is true whenever one or the other or both sides are true, the final assertion is always true and the program segment is correct. 注意使用 mathtex 显示公式

中文解题

### 5. Verify that the following program segment is correct with respect to the initial assertion *T* and the final assertion: [ (x \le y \land \text{max} = y) \lor (x > y \land \text{max} = x) ] ```plaintext if x <= y then max := y else max := x ``` --- **Solution:** Initial assertion *T* means this segment will always run and everything is always correct at the beginning of the segment. If ( x < y ) initially, *max* is set equal to *y*, so the left side of the final assertion ∨: ((x \le y \land \text{max} = y)) is true. If ( x = y ) initially, *max* is set equal to *y*, so ((x \le y \land \text{max} = y)) is again true. If ( x > y ), *max* is set equal to *x*, so the right side of the final assertion ∨: ((x > y \land \text{max} = x)) is true. Since ∨ is true whenever one or the other or both sides are true, the final assertion is always true and the program segment is correct. 注意使用 mathtex 显示公式 中文解题


### 5. Verify that the following program segment is correct with respect to the initial assertion *T* and the final assertion:

[
(x \le y \land \text{max} = y) \lor (x > y \land \text{max} = x)
]

```plaintext
if x <= y then
    max := y
else
    max := x
```

---

**Solution:**

Initial assertion *T* means this segment will always run and everything is always correct at the beginning of the segment.

If ( x < y ) initially, *max* is set equal to *y*, so the left side of the final assertion ∨:
((x \le y \land \text{max} = y)) is true.

If ( x = y ) initially, *max* is set equal to *y*, so ((x \le y \land \text{max} = y)) is again true.

If ( x > y ), *max* is set equal to *x*, so the right side of the final assertion ∨:
((x > y \land \text{max} = x)) is true.

Since ∨ is true whenever one or the other or both sides are true, the final assertion is always true and the program segment is correct.

注意使用 mathtex 显示公式

### 5. Verify that the following program segment is correct with respect to the initial assertion *T* and the final assertion: [ (x \le y \land \text{max} = y) \lor (x > y \land \text{max} = x) ] ```plaintext if x <= y then max := y else max := x ``` --- **Solution:** Initial assertion *T* means this segment will always run and everything is always correct at the beginning of the segment. If ( x < y ) initially, *max* is set equal to *y*, so the left side of the final assertion ∨: ((x \le y \land \text{max} = y)) is true. If ( x = y ) initially, *max* is set equal to *y*, so ((x \le y \land \text{max} = y)) is again true. If ( x > y ), *max* is set equal to *x*, so the right side of the final assertion ∨: ((x > y \land \text{max} = x)) is true. Since ∨ is true whenever one or the other or both sides are true, the final assertion is always true and the program segment is correct. 注意使用 mathtex 显示公式

Set up a generating function and use it to find the number of ways in which nine identical
blocks can be given to four children if each child gets at least one block.

Set up a generating function and use it to find the number of ways in which nine identical blocks can be given to four children if each child gets at least one block.

3. Solve the recurrence relation  

\[
a_n = 2a_{n-1}
\]

using generating functions. Where \( a_0 = 1 \)

*Note:* *I won’t ask a harder one than this if specifically requesting generating functions to solve a recurrence.*

注意公式使用 mathtex

3. Solve the recurrence relation \[ a_n = 2a_{n-1} \] using generating functions. Where \( a_0 = 1 \) *Note:* *I won’t ask a harder one than this if specifically requesting generating functions to solve a recurrence.* 注意公式使用 mathtex

### 2. Consider the recurrence relation ( a_n = 2a_{n-1} + 3n )

**(a)** Write the associated homogeneous recurrence relation.

---

**(b)** Find the general solution to the associated homogeneous recurrence relation.

---

**(c)** Find the particular solution to the given recurrence relation.

---

**(d)** Give the general solution to the given recurrence relation.

---

**(e)** Find the solution to the given recurrence relation when ( a_0 = 1 )

### 2. Consider the recurrence relation ( a_n = 2a_{n-1} + 3n ) **(a)** Write the associated homogeneous recurrence relation. --- **(b)** Find the general solution to the associated homogeneous recurrence relation. --- **(c)** Find the particular solution to the given recurrence relation. --- **(d)** Give the general solution to the given recurrence relation. --- **(e)** Find the solution to the given recurrence relation when ( a_0 = 1 )